
GSRC Annual

Symposium
September 28, 2010

through

 October 1, 2010

Application 1: Static Scheduling for

Energy/Performance/Reliability

Novel Integer Linear Programming Formulation that

 optimizes periodic applications using pipelining

 includes communication overheads

 handles “lock” variables through mutual exclusion

Objective: Busy Energy + Idle Energy + Data Migration

Overhead

Constraints:

• Overlap and Sequencing

• Error Tolerance

• Mutual Exclusion

• Pipelining

• Period and Deadline

Results

Scheduler is run for StreamIt benchmarks on different

configurations, which are assumed to be DVFS overscaled.

Energy gains depend on:

• Hardware configuration
• High idle power decreases gains

• High error rate decreases gains for low error tolerance but

increases gains for high error tolerance

• Application characteristics
• Applications with workload-balanced tasks have better gains

• Error tolerance of an application decreases energy

significantly up to a point and flattens after all cores can be

utilized

SISA Graph

• No side effects

inside a chunk

• Data flow marked

explicitly

A System-Level ISA and its Applications to

Energy-Performance-Reliability Scheduling and Scratchpad Allocation

Yavuz Yetim, Wenhao Jia, Margaret Martonosi, Sharad Malik, Kelly Shaw* Platforms and AlternativeThemes,

Task #5.2.1 and 5.6.3

Motivation

Problems:

• Rapidly increasing core counts

• Various heterogeneity (GPU, faster/slower cores)

• Decreasing reliability

Goal: Achieve performance, energy and reliability

demands in future heterogeneous and dynamically

changing multicore systems

SISA: Approach

Represent programs as graphs with app characteristics

• Data communication

• Length of computational tasks

• Reliability requirements

• Task dependency

Use SISA representation to do

• Static scheduling with Integer Linear Programming

• Pre-run resource mapping (such as scratchpad)

• Dynamic task management

Acknowledgements
The authors acknowledge the support of the Gigascale Systems

Research Center, one of six research centers funded under the

Focus Center Research Program, a Semiconductor Research

Corporation program. In addition, this work was supported in

part by National Science Foundation grant CCF-0916971.

t0
t1

t2
t3

Scheduler

t0 t1

t2

t3

Conclusions

• SISA graph-based program representation effectively

exploits Performance/Energy/Reliability space

•Up to 34% energy savings can be achieved given

application reliability requirements

• Based on data flow exposed by SISA graph, up to

99% memory loads can be eliminated with reasonable

scratchpad size

Application 2:

Scratchpad Memory Allocation

Objective: Minimize program execution time on

machines with local software-controlled memory

Method:

• Use the SISA graph representation of an application

that has memory accesses and data flow marked

•Allocate the scratchpad for variables on the critical

path through the Control Flow Graphs

•Allocate the scratchpad for the rest variables

0%

20%

40%

60%

80%

100%

8K 32K 128K 512K 64 256 1K 4K 32K 64K 128K

L
o

a
d
 T

yp
e
 P

e
n
ce

n
ta

g
e

Scratchpad Size (Bytes)

Main Memory Loads vs. Scratchpad Size

Scratchpad Loads Memory Loads

Blackscholes

(428K)

FFT

(2.4K)

LU

(66K)

Results:

• On PARSEC benchmark suite

• Global memory loads reduce as available

scratchpad space increases

Princeton University * University of Richmond

inst. count

read phase

if block

write phase

execution
read phase

write phase
execution

data flow control flow

while block

100

99 1

100: edge traverse count

 from profiling X-Y-Z indicates

high/medium/low

error cores

